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Abstract

Latent subcategory models (LSMs) offer significant im-
provements over training linear support vector machines
(SVMs). Training LSMs is a challenging task due to the
potentially large number of local optima in the objective
function and the increased model complexity which requires
large training set sizes. Often, larger datasets are available
as a collection of heterogeneous datasets. However, pre-
vious work has highlighted the possible danger of simply
training a model from the combined datasets, due to the
presence of bias. In this paper, we present a model which
jointly learns an LSM for each dataset as well as a com-
pound LSM. The method provides a means to borrow statis-
tical strength from the datasets while reducing their inher-
ent bias. In experiments we demonstrate that the compound
LSM, when tested on PASCAL, LabelMe, Caltech101 and
SUN in a leave-one-dataset-out fashion, achieves an aver-
age improvement of over 6.5% over a previous SVM-based
undoing bias approach and an average improvement of over
8.5% over a standard LSM trained on the concatenation of
the datasets.

1. Introduction
The problem of object recognition has received much at-

tention in Computer Vision. One of the most successful ob-
ject recognition systems is based on deformable part-based
models (DPM), see [5, 9, 10, 29] and references therein. A
special case of Latent SVMs are latent subcategory models
(LSM) [5, 11, 29]. This approach has proved useful when
the object we wish to classify/detect consists of multiple
components, each of which captures different characteris-
tics of the object class. For example, components may be
associated with different viewpoints, light conditions, etc.

Under these circumstances, training a single global classi-
fier on the full dataset may result in a low complexity model
which underfits the data. To address this, latent subcategory
models train multiple subclassifiers simultaneously, each of
which is associated with a specific linear classifier capturing
specific characteristics of the object class.

Training these models is a challenging task due to the
presence of many local optima in the objective function and
the increased model complexity which requires large train-
ing set sizes. An obvious way to have larger training set
sizes is to merge datasets from different sources. However,
it has been observed by [20, 25] that training from com-
bined datasets needs to be done with care. Although we
would expect training a classifier from all available data to
be beneficial, it may in fact result in decreased performance
because standard machine learning methods do not take into
account the bias inherent in each dataset. To address this
problem several approaches have been considered, some of
which we review in the next section.

The principal contribution of this paper is to extend
LSMs to deal with multiple biased datasets. We address this
problem from a multitask learning perspective [7], combin-
ing ideas from Computer Vision which have been put for-
ward in [15]. This methodology leverages the availability of
multiple biased datasets to tackle a common classification
task (e.g. car classification) in a principled way. Specifi-
cally, we simultaneously learn a set of biased LSMs as well
as a compound LSM (visual world model) which is con-
strained to perform well on a concatenation of all datasets.
Although we focus on LSMs, the framework we present in
this paper extends in a natural manner to training multiple
latent part-based models. We describe a training procedure
for our method and provide experimental analysis, which
indicates that the method offers a significant improvement
over both simply training a latent subcategory model from
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Figure 1. Parameter sharing across datasets can help to train a bet-
ter subcategory model of the visual world. Here we have two
datasets (red and blue) of a class (e.g. “dog”), each of which is di-
vided into three subcategories (e.g. viewpoints). The red and blue
classifiers are trained on their respective datasets. Our method, in
black, both learns the subcategories and undoes the bias inherent
in each dataset.

the concatenation of all datasets as well as the undoing bias
method of [15]. Hence, our approach achieves the best of
both worlds, see Figure 1 for an illustration of the method.

As we noted earlier, training DPMs requires solving a
difficult nonconvex optimization problem, which is prone to
many local minima. Therefore, a good initialization heuris-
tic is important in order to reach a good solution. As a sec-
ond contribution of this paper, we observe that if the pos-
itive examples admit a good K-means clustering, and the
regularization parameter associated used in LSM is small
relative to the cluster separation, then a good suboptimal so-
lution for the LSM can be obtained by simply clustering the
positive class and then training independent SVMs to sep-
arate each cluster from the negatives. This result supports
a commonly used heuristic for training subcategory models
[5]. Furthermore, we describe how clustering initialization
is performed in the multitask setting.

The paper is organized in the following manner. In Sec-
tion 2 we review previous related work. Section 3 gives a
short account of LSMs and Section 4 provides a justification
for K-means based initialization schemes. Next, Section 5
presents our approach for training multiple LSMs from a
collection of biased datasets. Section 6 reports our exper-
imental results with this new method. Finally, Section 7
summarizes our findings and outlines future directions of
research.

2. Related Work

Latent subcategory models (sometimes also called mix-
ture of template models) [5, 11, 29] are a special case of
DPMs [9, 10] and structured output learning [26]. Closely
related methods have also been considered in machine

learning under the name of multiprototype models or mul-
tiprototype support vector machines [1], as well as in opti-
mization [17]. An important issue in training these models
is the initialization of the subclassifier weight vectors. This
issue has been addressed in [5, 11], where clustering algo-
rithms such as K-means is used to cluster the positive class
and subsequently independent SVMs are trained to initial-
ize the weight vectors of the subclassifiers. In Section 4,
we observe that K-means clustering can be justified as a
good initialization heuristic when the positive class admits
a set of compact clusters. Furthermore we discuss how this
initialization can be adapted to our undoing bias setting.

We note that other initialization heuristics are discussed
in [10]. Furthermore other interesting latent subcategory
formulations are presented in [12] and [28]. While we do
not follow these works here, our method could also be ex-
tended to those settings, which could lead to interesting fu-
ture research directions.

Most related to our paper is the work by Khosla et al.
[15], which consider jointly training multiple linear max-
margin classifiers from corresponding biased datasets. The
classifiers pertain to the same classification (or detection)
task (e.g. “car classification”) but each is trained to per-
form well on a specific “biased” dataset. Their method is
similar to the regularized multitask learning framework of
Evgeniou and Pontil [7] with the addition that the common
weight vector (“visual world” classifier) is constrained to fit
the union of all the training datasets well. A key novelty of
our approach is that we enhance these methods by allowing
the common vector and bias vectors to be LSMs. We show
experimentally that our method improves significantly over
both [15] and a standard LSM trained on the concatenation
of all datasets.

At last, we note that our model is different from the su-
pervised domain adaptation methodology in [22, 16], which
focuses on learning transformations between a source and a
target domain. A key difference compared to these methods
is that they require labels in the target domain, whereas our
setting can be tested on unseen datasets, see also [15] for
a discussion. Other related works include [13], [19], and
[23].

3. Background on Latent Subcategory Models

In this section, we review latent subcategory (LSMs).
We let K be the number of linear subclassifiers and let
(w1, b1), . . . , (wK , bK) be the corresponding parameters.
A point x belongs to the subclass k if 〈wk,x〉 + bk > 0,
where 〈·, ·〉 denotes the standard scalar product between two
vectors. For simplicity, throughout the paper we drop the
threshold bk since it can be incorporated in the weight vec-
tor using the input representation (x, 1). A point x is clas-
sified as positive provided at least one subclassifier gives a



positive output1, that is, maxk 〈wk,x〉 > 0. The geometric
interpretation of this classification rule is that the negative
class is the intersection of K half-spaces. Alternatively, the
positive class is the union of half-spaces.

A standard way to learn the parameters is to minimize
the objective function [5, 10, 29]

EK,λ(w) =

m∑
i=1

L(yi max
k
〈wk,xi〉) + λΩ(w) (1)

where (xi, yi)
m
i=1 is a training sequence, L is the loss func-

tion and, with some abuse of notation, w denotes the con-
catenation of all the weight vectors. In this paper, we restrict
our attention to the hinge loss function, which is defined as
L(z) = max(0, 1 − z). However, our observations extend
to any convex loss function which is monotonic nonincreas-
ing, such as the logistic loss.

We denote by P andN the index sets for the positive and
negative examples, respectively, and decompose the error
term as∑

i∈P
L(max

k
〈wk,xi〉) +

∑
i∈N

L(−max
k
〈wk,xi〉). (2)

Unless K = 1 or K = |P |, problem (1) is typically non-
convex2 because the loss terms on the positive examples
are nonconvex. To see this, note that L(maxk 〈wk,x〉) =
mink L(〈wk,x〉), which is neither convex nor concave3.
On the other hand the negative terms are convex since
L(−maxk 〈wk,x〉) = maxk L(−〈wk,x〉), and the max-
imum of convex functions remains convex.

The most popular instance of (1) is based on the regular-
izer Ω(w) =

∑
k ‖wk‖2 [5, 11, 29] and is a special case of

standard DPMs [9]. Note that the case K = 1 corresponds
essentially to a standard SVM, whereas the case K = |P |
reduces to training |P | linear SVMs, each of which sepa-
rates one positive point from the negatives. The latter case
is also known as exemplar SVMs [18].

It has been noted that standard DPMs suffer from the
“evaporating effect”, see e.g. [10] for a discussion. This
means that some of the subclassifiers are redundant, be-
cause they never achieve the maximum output among all
subclassifiers. To overcome this problem, the regularizer
has been modified to [10] Ω(w) = maxk ‖wk‖2. This
regularizer encourages weight vectors which have the same
size at the optimum (that is, the same margin is sought for
each component), thereby mitigating the evaporating effect.
The corresponding optimization problem is slightly more

1The model does not exclude that a positive point belongs to more than
one subclass. For example, this would be the case if the subclassifiers are
associated to different nearby viewpoints.

2If λ is large enough the objective function in (1) is convex, but this
choice yields a low complexity model which may perform poorly.

3The functionL(〈wk,x〉) is convex in wk but the minimum of convex
functions is neither convex or concave in general, see e.g., [3].

involved since the above regularizer is not differentiable.
However, similar techniques to those described below can
be applied to solve the optimization problem.

A common training procedure to solve (1) is based on
alternating minimization. We fix some starting value for
wk and compute the subclasses Pk = {i ∈ P : k =
argmax`〈w`,xi〉}. We then update the weights wk by min-
imizing the convex objective function

FK,λ(w) =

K∑
k=1

∑
i∈Pk

L(〈wk,x〉)

+
∑
i∈N

L(−max
k
〈wk,xi〉) + λΩ(w1, . . . ,wK). (3)

This process is then iterated a number of times until some
convergence criterion is satisfied. The objective function
decreases at each step and in the limit the process converges
to a local optimum.

A variation to (1) is to replace the error term associated
with the negative examples by∑

k

∑
i∈N

L(−〈wk,xi〉) (4)

see for example [11, 28]. This results in a simpler train-
ing procedure, in that the updating step reduces to solv-
ing K independent SVMs, each of which separates one
of the clusters from all the negatives. Each step can then
be solved with standard SVM toolboxes. Often in prac-
tice problem (1) is solved by stochastic subgradient meth-
ods, which avoid computations that require all the training
data at once and are especially convenient for distributed
optimization. Since the objective function is nonconvex,
stochastic gradient descent (SGD) is applied to a convex
upper bound to the objective, which uses a DC decompo-
sition (difference of convex functions, see e.g. [2, 14] and
references therein): the objective function is first decom-
posed into a sum of a convex and a concave function and
then the concave term is linearly approximated around the
current solution. This way we obtain an upper bound to the
objective which we then seek to mininimize in the next step.
We refer to [10] for more information.

Finally we note that LSMs are a special case of DPMs
without parts. Specifically, a DPM classifies an image x
into one of two classes according to the sign of the func-
tion maxk,hw

>
kφk(x, h). Here k ∈ {1, . . . ,K} is the la-

tent component and h is an additional latent variable which
specifies the position and scale of prescribed parts in the ob-
ject, represented by the feature vector φk(x, h). LSMs do
not consider parts and hence they choose φk(x, h) = x and
discard the maximum over h. Our methodology, presented
below, extends to DPMs in a natural manner, however for
simplicity in this paper we focus on LSMs.



4. Effect of Clustering Initialization
As we noted above, the objective function of an LSM

(1) is nonconvex. In this section, we argue that if the posi-
tive points admit a good K-means clustering, then the min-
imizer of the function (3) provides a good suboptimal so-
lution to the problem of minimizing (1). Our observations
justify a standard initialization heuristic which was advo-
cated in [5, 27].

Specifically, we assume that we have found a good K-
means clustering of the positive data, meaning that the av-
erage distortion error∑

i∈P
min
k
‖µk − xi‖22

is small relative to the total variance of the data. In the above
formula µ1, . . . , µK denote the K means. We also let ki be
cluster index of point xi, that is ki = argmink‖xi − µk‖,
we let δi = xi − µki and ε =

∑
i∈P ‖δi‖. Then we can

show that

min
w

FK,λ′(w) ≤ min
w

EK,λ(w) ≤ min
w

FK,λ(w) (5)

where λ′ = λ−2ε. In other words, if ε is much smaller than
λ then the gap between the upper and lower bounds is also
small. In this case, the initialization induced by K-means
clustering provides a good approximation to the solution of
problem (1).

The right inequality in (5) holds since the objective func-
tion in problem (3) specifies the assignment of each positive
point to a subclassifier and hence this objective is greater or
equal to that in problem (1). The proof of the left inequality
uses the fact that the hinge loss function is Lipschitz with
constant 1, namely |L(ξ) − L(ξ′)| ≤ |ξ − ξ′|. In particu-
lar this allows us to give a good approximation of the loss
mink(1−〈wk,xi〉) in terms of the loss of the corresponding
mean, that is, mink(1 − 〈wk, µki〉). A detailed derivation
is presented in the supplementary material.

The bound (5) has a number of implications. First, as
K increases, the gap between the upper and lower bound
shrinks, hence the quality of the suboptimal solution im-
proves. As K decreases down to K = 2 the initialization
induced by K-means provides a more coarse approxima-
tion of problem (1), see also [29] for related considerations.
Second, the bound suggests that a better initialization can be
obtained by replacingK-means byK-medians, because the
latter algorithm directly optimizes the quantity ε appearing
in the bound.

We notice that a similar reasoning to the one presented
in this section applies when the negative error term in (1) is
replaced by (4). In this case, clustering the positive points,
and subsequently trainingK independent SVMs which sep-
arate each cluster from the set of all negative points yields

a good suboptimal solution of the corresponding noncon-
vex problem, provided the distortion parameter ε is small
relative to the regularization parameter λ.

5. Learning from Multiple Biased Datasets

In this section, we extend LSMs described in Section 2
to a multitask learning setting. Following [15] we assume
that we have several datasets pertaining to the same object
classification or detection task. Each dataset is collected un-
der specific conditions and so it provides a biased view of
the object class (and possibly the negative class as well).
For example, if the task is people classification one dataset
may be obtained by labelling indoor images as people / not
people, whereas another dataset may be compiled outdoors,
and other datasets may be generated by crawling images
from internet, etc. Although the classification task is the
same across all datasets, the input data distribution changes
significantly from one dataset to another. Therefore a classi-
fier which performs well on one dataset may perform poorly
on another dataset. Indeed, [15] empirically observed that
training on the concatenation of all the datasets and testing
on a particular dataset is outperformed by simply training
and testing on the same dataset, despite the smaller training
set size.

In the sequel, we let T be the number of datasets and
for t ∈ {1, . . . , T}, we let mt be the sample size in train-
ing dataset t and let Dt = {(xt1, yt1), . . . , (xtmt

, ytmt
)} ⊂

Rd × {−1, 1} be the corresponding data examples. We as-
sume that the images in all the datasets have the same repre-
sentation so the weight vectors can be compared by simply
looking at their pairwise Euclidean distance.

5.1. Undoing Bias SVM

In [15], the authors proposed a modified version of the
multitask learning framework in [7] in which the error term
includes an additional term measuring the performance of a
compound model (visual world classifier) on the concatena-
tion of all the datasets. This term is especially useful when
testing the compound model on an “unseen” dataset, a prob-
lem we return upon in the sequel. Specifically, in [15] the
authors learn a set of linear max-margin classifiers, repre-
sented by weight vectors wt ∈ Rd for each dataset, under
the assumption that the weights are related by the equation
wt = w0 + vt, where w0 is a compound weight vector
(which is denoted as the visual world weight in [15]). The
weights w0 and v1, . . . ,vT are then learned by minimizing
a regularized objective function which leverages the error of
the biased vectors on the corresponding dataset, the error of
the visual world vector on the concatenation of the datasets
and a regularization term which encourages small norm of
all the weight vectors.



Object Bird Car Person
K-means 33.8 ±0.4 65.8± 0.4 67.5± 0.2
Random 29.4 ±0.6 61.3± 0.5 64.7± 0.5

Table 1. AP (over 30 runs) of our method with or without K-means
initialization for three object classification tasks.

5.2. Undoing Bias LSM

We now extend the above framework to the latent sub-
category setting. We let w1

t , . . . ,w
K
t ∈ Rd be the weight

vectors for the t-th dataset, for t = 1, . . . , T . For simplic-
ity, we assume that the number of subclassifiers is the same
across the datasets, but the general case can be handled sim-
ilarly. Following [7, 15], we assume that the weight vectors
representative of the k-th subcategory across the different
datasets are related by the equation

wk
t = wk

0 + vkt (6)

for k = 1, . . . ,K and t = 1, . . . , T . The weights wk
0 are

shared across the datasets and the weights vkt capture the
bias of the k-th weight vector in the t-th dataset. We learn
all these weights by minimizing the objective function

C1

T∑
t=1

mt∑
i=1

L(yti max
k
〈wk

0 + vkt ,xti〉) (7)

+ C2

T∑
t=1

mt∑
i=1

L(yti max
k
〈wk

0 ,xti〉) (8)

+

K∑
k=1

(
‖wk

0‖2 + ρ

T∑
t=1

‖vkt ‖2
)
. (9)

In addition to the number of subclassifiers K, the method
depends on three other nonnegative hyperparameters,
namely C1, C2 and ρ, which can be tuned on a validation
set. Note that the method reduces to that in [15] if K = 1
and to the one in [7] ifK = 1 and C2 = 0. Furthermore our
method reduces to training a single LSM on the concatena-
tion of all datasets if C1 = 0.

The parameter ρ plays an especially important role: it
controls the extent to which the datasets are similar, or in
other words the degree of bias of the datasets. Taking the
limit ρ → ∞ (or in practice setting ρ � 1) eliminates the
bias vectors vkt , so we simply learn a single LSM on the
concatenation of all the datasets, ignoring any possible bias
present in the individual datasets. Conversely, setting ρ = 0
we learn the bias vectors and visual world model indepen-
dently. The expectation is that a good model lies at an inter-
mediate value of the parameter ρ, which encourages some
sharing between the datasets.

5.3. Implementation

A common method used to optimize latent SVM and
in particular LSMs is stochastic gradient descent (SGD),
see for example [24]. At each iteration we randomly se-
lect a dataset t and a point xti from that dataset and update
the bias weight vector vkt and wk

0 by subgradient descent.
We either train the SGD method with a fixed number of
epochs or set a convergence criterion that checks the max-
imum change of the weight vectors. Furthermore, we use
the adapting cache trick: if a point is correctly classified by
at least two base and bias pairs (wk

0 ,w
k
t ) then we give it a

long cooldown. This means that the next 5 or 10 times the
point is selected, we instead skip it. A similar process is
used in [9, 15] and we verified empirically that this results
in improved training times, without any significant loss in
accuracy.

5.4. Initialization

It is worth discussing how the weight vectors are initial-
ized. First, we group all the positive points across the differ-
ent datasets and run K-means clustering. Let Pk be the set
of points in cluster k, let Pt,k be the subset of such points
from dataset t and let Nt be the set of negative examples in
the dataset t. For each subcategory k ∈ {1, . . . ,K} we ini-
tialize the corresponding weight vectors wk

0 and vk1 , . . . ,v
k
T

as the solution obtained by running the undoing datasets’
bias method from [15], with training sets Dt = {(xti, yti) :
i ∈ Pt,k ∪Nt}. We then iterate the process using SGD for
a number of epochs (we use 100 in our experiments below).

Our observations in Section 4 extend in a natural way
to the undoing bias LSMs setting. The general idea is the
same: if the data admit a good K-means clustering then
the initialization induced by K-means provides a good sub-
optimal solution of the problem. We have experimentally
verified that the improvement offered by this initialization
over a random choice is large. Table 1 reports the perfor-
mance of the our method after 100 epochs of SGD starting
with or without the K-means initialization. Average per-
formance and standard deviation are reported over 30 trials.
As it can be seen K-means initialization offers a substantial
improvement4.

6. Experiments
In this section, we present an empirical study of the pro-

posed method. The goal of the experiments is twofold. On
the one hand, we investigate the advantage offered by our
method over standard LSMs trained on the union (concate-
nation) of all the datasets. Intuitively, we expect our method
to learn a better set of visual world subclassifiers since it fil-

4Preliminary experiments further indicate thatK-medians improves by
0.4% over K-means, in agreement with our theoretical observations in
Section 4, however but a detailed analysis is deferred to future work.



Test wPASCAL wLabelMe wCaltech101 wSUN wvw Aggregate Independent

Pas 66.8 (64.8) 55.6 (50.5) 56.3 (54.2) 65.9 (51.2) 66.5 (57.0) 63.7 (57.4) 67.1 (65.9)
Lab 73.1 (68.8) 75.2 (72.9) 75.0 (71.2) 71.6 (73.3) 75.1 (72.4) 72.9 (72.9) 72.4 (71.7)
Cal 96.5 (94.8) 97.5 (94.6) 98.2 (99.7) 97.6 (95.6) 98.0 (98.9) 98.9 (97.0) 98.8 (99.4)

SUN 57.2 (40.1) 57.6 (46.5) 57.7 (50.2) 58.0 (59.6) 57.8 (54.1) 53.9 (54.0) 58.9 (55.3)

Average 73.4 (67.1) 71.2 (66.2) 71.8 (68.8) 73.3 (69.9) 74.5 (70.6) 72.4 (70.3) 74.3 (73.0)

Table 2. Average precision (AP) of “car classification” on seen datasets for our method (K = 2) and, within brackets, AP for the undoing
bias method in [15].

ters out datasets bias. On the other hand, we compare our
method to the “undoing bias” method in [15], where each
dataset is modelled as a linear SVM classifier (so no sub-
classifiers are learned in this case). As we already noted,
both methods are special cases of ours for a certain choice
of the hyperparameters.

In the experiments, we focus on object classification
tasks as this allows us to directly compare with the results
in [15] using the publicly available features provided by
the authors5. However the method can also be employed
for detection experiments. Following the setting in [15] we
employ four datasets: Caltech101 [8], LabelMe [21], PAS-
CAL2007 [6] and SUN09 [4]. We use the bag-of-words
representation provided by [15]. It is obtained by extract-
ing SIFT descriptors at multiple patches, followed by local
linear coding and a 3-level spatial pyramid with linear ker-
nel. Performance of the methods is evaluated by average
precision (AP).

We use the same training and test splits provided in [15].
Furthermore, to tune the model parameter C1, C2 and ρ, we
used 75% of training data of each dataset for actual training
and the remaining 25% for validation. We use the following
parameter range for validation: ρ = 10r, for r ranging from
−9 to 4 with a step of 1 and C1, C2 = 10r, for r ranging
from −9 to 4 with a step of .5.In our experiments, the number of subclassifiers K is re-
garded as a free hyperparameter chosen from the test set and
we try values from 1 and up to 10. Although related work
by [5] recommends using values of K up to 50, they con-
sider detection tasks. However, as we show below, smaller
values of K provide the best results for classification tasks,
since the features employed in this case are extracted from
larger images which are often dominated by the background
rather than the object itself. This makes it more difficult to
learn finer subcategories.

We test the methods in two different scenarios, following
the “seen dataset” and “unseen dataset” settings outlined
in [15]. In the first scenario we test on the same datasets
used for training. The aim of this experiment is to demon-
strate that the visual world model works better than a single
model trained on the concatenation of the datasets, and it is
competitive with a specific model trained only on the same

5See the link http://undoingbias.csail.mit.edu/.

domain. Furthermore, we show the advantage over setting
K = 1. In the second scenario, we test the model on a new
dataset, which does not contribute any training points. Here
our aim is to show that the visual world model improves
over just training a model on the concatenation of the train-
ing datasets as well as the visual world model from [15].
We discuss the results in turn.

6.1. Testing on Seen Datasets

In the first set of experiments, we test our method on
“car classification” datasets. Results are reported in Ta-
bles 2. The main numbers indicate the performance of our
method, while within brackets we report performance for
K = 1, which corresponds to the undoing bias method in
[15]. In columns 2-5 we test the wk

t on all datasets, for
t ∈ {PASCAL, LabelME, Calthech101, SUN}. In col-
umn 6 we test the visual world vectors wk

0 (denoted by wvw

in the tables). As noted above, in this set of experiments we
test the method on the same datasets used during training
(by this we mean that the training and test sets are selected
within the same domain). For this reason and since the
datasets are fairly large, we do not expect much improve-
ment over training on each dataset independently (last col-
umn in the table). However the key point of the table is that
training a single LSM model on the union of all datasets (we
call this the aggregate model in the tables) yields a classifier
which neither performs well on any specific dataset nor does
it perform well on average. In particular, the performance
on the “visual world” classifier is much better than that of
the aggregated model. This finding, due to dataset bias, is in
line with results in [15], as are our results for K = 1. Our
results indicate that, on average, using a LSM as the core
classifier provides a significant advantage over using single
max-margin linear classifier. The first case corresponds to
a variable number of subclassifiers, the second case corre-
sponds to K = 1. This is particularly evident by comparing
the performance of the two visual world classifiers in the
two cases.

6.2. Testing on Unseen Datasets

In the next set of experiments, we train our method on
three out of four datasets, retain the visual world classifier
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Figure 2. Relative improvement of undoing dataset bias LSM vs. the baseline LSM trained on all datasets at once (aggregated LSM). On
all datasets at once (P: PASCAL, L: LabelMe, C: Caltech101, SUN: M: mean).
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Figure 3. Relative improvement of undoing dataset bias LSM vs. undoing bias SVM [15].

and test it on the dataset left out during training6. Results
are reported in Figure 2, where we show the relative im-
provement over training a single LSM on all datasets (ag-
gregated LSM), and Figure 3, where we show the relative
improvement of our method over the method in [15]. Over-
all our method gives an average improvement of more than
8.5% over the aggregated LSMs and an average improve-
ment of more than 6.5% over [15]. On some datasets and
objects the improvement is much more pronounced than
others, although overall the method improves in all cases
(with the exception of “chair classification” on the PASCAL
dataset, where our method is slightly worse than the two
baselines). Although our method tends to improve more
over aggregated LSM than undoing bias SVMs, it is inter-
esting to note that on the Caltech101 “person” or “dog”
datasets, the trend reverses. Indeed, these object classes
contain only one subcategory (for “person” a centered face
image, for “dogs” only Dalmatian dogs) hence when a sin-
gle subcategory model is trained on the remaining three
datasets a more confused classifier is learned.

To further illustrate the advantage offered by the new
method, we display in Figure 4 the car images which
achieved a top score on each of the four datasets for our
method and the visual world classifier from [15]. In our
case we useK = 2 subclassifiers because this gives the best
performance on this object class. Note that among the two

6That is, we predict as sign(maxk 〈wk
0 ,x〉), where wk

0 are the com-
pound subcategory models in equation (6).

visual world subclassifiers, w1
0 and w2

0, the former tends to
capture images containing a few cars of small size with a
large portion of background (in order to verify this property
please zoom the figure), while the latter concentrates on im-
ages which depict a single car occupying a larger portion of
the image. This effect is especially evident on the PASCAL
and LabelMe datasets. On Caltech101, the first subclassi-
fier is empty, which is not surprising as this dataset contains
only images with well centered objects, so no cars belong
to the first discovered subcategory. Finally the SUN dataset
has fewer images of large cars and contributes less to the
second subcategory. Note, however, that we still find im-
ages of single cars although of smaller size. The right por-
tion of Figure 4 reports similar scores for the visual world
classifier trained in [15] (K = 1). In this case we see that
images of the two different types are present among the top
scores, which indicates that the model is too simple and un-
derfits the data in this example.

7. Discussion and Conclusion
We presented a method for learning latent subcategories

in presence of multiple biased datasets. Our approach is
a natural extension of previous work on multitask learning
to the setting of latent subcategory models (LSMs). In ad-
dition to the number of subclassifiers, the model depends
upon two more hyperparameters, which control the fit of
the visual world LSM to all the datasets and the fit of each
biased LSM to the corresponding dataset. In experiments,



Figure 4. Left and center, the top scoring images for visual world subclassifiers w1
0 and w2

0 using our method. Right, the top scoring image
for single category classifier w0 from [15].

we demonstrated that our method provides significant im-
provement over both standard LSMs and previous undoing
bias methods based on SVM. Both methods are included
in our framework for a particular parameter choice and our
empirical analysis indicate our model achieves the best of
both worlds: it mitigates the negative effect of dataset bias
and still reaps the benefits of learning object subcategories.
In future work it would be valuable to extend ideas pre-

sented here to the setting of DPMs, in which the subclassi-
fiers are part-based models. Furthermore, our observations
on K-means initialization may be extended to other clus-
tering schemes and other LSMs such as those described in
[12] and [28]. Finally, learning LSMs across both biased
datasets and different object classes provides an important
direction of research.
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Supplementary Material
A. Derivation of Bound (5)

The right inequality readily follows by noting that the objective function in problem (3) considers an a-priori assignment
of each positive point to a subclassifier, hence the objective is greater or equal to that in (1).

We now prove the left inequality. We consider a more general setting, in which the loss function L is convex and Lipschitz.
The latter property means that there exists a constant φ such that for every ξ, ξ′ ∈ R, |L(ξ)−L(ξ′)| ≤ φ|ξ−ξ′|. For example
the hinge loss is Lipschitz with constant φ = 1.

Choosing ξ = 〈wk,xi〉, ξ′ = 〈wk, µki〉 and letting δi = xi − µki , we obtain

|L(〈wk, µki〉)− L(〈wk,xi〉)| ≤ φ|〈wk, δi〉| ≤ φ‖wk‖‖δi‖

where the last step follows by Cauchy-Schwarz inequality. Furthermore, using the property that, for every choice of functions
f1, . . . , fK , it holds |mink fk(x)−mink fk(x′)| ≤ maxk |fk(x)− fk(x′)|, we have

|min
k
L(〈wk, µki〉)−min

k
L(〈wk,xi〉)| ≤ max

k
|L(〈wk, µki〉)−min

k
L(〈wk,xi〉)| ≤ φmax

k
‖wk‖‖δi‖.

Letting ε = φ
∑
i∈P ‖δi‖, we conclude, for every choice of the weight vectors w1, . . . ,wK , that

K∑
k=1

pkL(〈wk, µk〉)− εmax
k
‖wk‖ ≤

∑
i∈P

min
k
L(〈wk,xi〉) ≤

K∑
k=1

pk min
`
L(〈w`, µk〉) + εmax

k
‖wk‖ (10)

where P is the set of positive points, Pk = {i ∈ P : ki = k} and pk = |Pk|, that is the number of positive points in cluster k.
Now, we define the surrogate convex function

SK,λ(w) =

K∑
k=1

pkL(〈wk, µk〉) +
∑
i∈N

L(−max
k
〈wk,xi〉) + λmax

k
‖wk‖, (11)

where w is a shorthand for the concatenation of the vectors w1, . . . ,wK . Using equation (10) we obtain that

SK,λ−ε(w) ≤ EK,λ(w) ≤ SK,λ+ε(w). (12)

Now using the fact that
L(〈wk, µki〉) ≥ L(〈wk,xi〉)− ‖wk‖‖δi‖

and recalling equation (3), we conclude that

FK,λ−2ε(w) =

K∑
k=1

∑
i∈Pk

L(〈wk,xi〉) +
∑
i∈N

L(−max
k
〈wk,xi〉) + (λ− 2ε) max

k
‖wk‖ ≤ SK,λ−ε(w).

The result follows by combining the left inequality in (12) with the above inequality and minimizing over the weight vectors
w1, . . . ,wK .

B. Effect of Initialization in Undoing Bias LSM
As we noted in the Section 5.4, the initialization induced by K-means clustering can be extended in a natural way to the

undoing bias LSM setting. We first run K-means on the aggregate set of positive points from all datasets. We let Pt,k be the
subset of positive points in dataset t which belong to cluster k and let Nt be the set of negative points in the same dataset.
For each subcategory k ∈ {1, . . . ,K}, we initialize the corresponding weight vectors wk

0 and vk1 , . . . ,v
k
T as the solution

obtained by running the undoing bias method in [15], with training sets Dt = {(xti, yti) : i ∈ Pt,k ∪Nt}. Specifically, for
each k, we solve the problem

T∑
t=1

∑
i∈Pt,k∪Nt

[
C1L(yti〈w0 + vt,xti〉) + C2L(yti〈w0,xti〉)

]
+ ‖w0‖2 + ρ

T∑
t=1

‖vt‖2.



Test bird car chair dog person
random 3.9 (0.1) 17.9 (0.1) 7.3 (0.1) 3.6 (0.3) 21.5 (0.1)

random followed by optimization 29.4 (0.6) 61.3 (0.5) 34.5 (0.1) 27.7 (0.8) 64.7 (0.5)
K-means 18.3 (0.3) 51.2 (0.6) 30.2 (0.2) 24.3 (0.3) 61.2 (0.3)

K-means followed by optimization 33.8 (0.4) 65.8 (0.4) 35.2 (0.2) 31.4 (0.3) 67.5 (0.2)

Table 3. Effect of initialization on AP on different image classification problems. Top to bottom: random initialization, random initialization
and optimization (100 epochs of SGD), K-means initialization, K-means initialization and optimization (100 epochs of SGD).

We then attempt to minimize the objective function formed by equations (7)–(9) with SGD for a number of epochs. The
computation of a subgradient for this objective function is outlined in Algorithm 1 below.

Using arguments similar to those outlined above we can show that this initialization gives a good approximation to the
minimum of the non-convex objective (7)–(9), provided the average distortion error

∑
t

∑
i∈P ‖δti‖ is small, where we let

δti = mink ‖xti − µk‖7.
Table 3 illustrates the importance of this initialization process, using a fixed parameter setting over 30 runs, in a seen dataset

setting. The first row shows the performance (average precision) of a random choice of w0 and v1, . . . ,vT . The second row
shows the performance of our method starting from this random initialization. The third row shows the performance of theK-
means induced initilization reviewed above. Finally, the fourth row is our method. As we see, K-means based initialization
on its own already provides a fair solution. In particular, for “chair”, “dog” and “person” there is a moderate gap between the
performance of K-means based initialization and K-means followed by optimization. Furthermore, in all cases K-means
followed by optimization provides a better solution than random initialization followed by optimization.

for k ≤ K do
if k = arg maxj〈w

j
0,xti〉 and k = arg maxj〈w

j
0 + vjt ,xti〉 and yti〈wk

0 ,xti〉 ≤ 1 and
yti〈wk

0 + vkt ,xti〉 ≤ 1 then
∂wk

0
J = −C1ytixti − C2ytixti + wk

0

else if k = arg maxj〈w
j
0,xti〉 and yti〈wk

0 ,xti〉 ≤ 1 then
∂wk

0
J = −C2ytixti + wk

0

else if k = arg maxj〈w
j
0 + vjt ,xti〉 and yti〈wk

0 + vkt ,xti〉 ≤ 1 then
∂wk

0
J = −C1ytixti + wk

0

else
∂wk

0
J = wk

0

end

for k ≤ K do
if k = arg maxj〈w

j
0 + vjt ,xti〉 and yti〈wk

0 + vkt ,xti〉 ≤ 1 then
∂vk

t
= −C1ytixti + ρvkt

else
∂vk

t
= ρvkt

end
Algorithm 1: Computation of subgradient for the objective function (7)–(9).

7More precisely, our analysis of K-means initialization can be extended to regularizer S(w) =
∑

k ||wk||2 as well as and the formulation in equations
(7)-(9). To this end, we need an additional step using the inequality λS(w) − εmaxk ‖wk‖ > (λ − ε)S(w) − ε/4. We postpone the full details to a
future occasion


