# Temporal Poselets for Collective Activity Detection and Recognition



Moin Nabi

Alessio Del Bue

Vittorio Murino

Pattern Analysis and Computer Vision (PAVIS) Istituto Italiano di Tecnologia (IIT)



### Introduction on Group Activity Analysis

#### Detection and recognition of actitivities in the wild, some example:









Clutter, crowd



Dynamic scenes



Camera view change



## **Descriptors for Activity Recognition**

#### Feature-based methods

- 3D-SIFT
- extended SURF
- HOG3D
- STIP
- Cuboid detector and more...

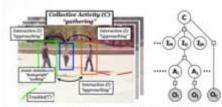
H. Wang, M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC 2009.



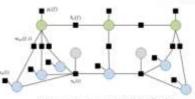
#### People-based methods

- Spatio-temporal local (STL)
- Action Context (AC)
- The Randomized Spatio-Temporal Volume (RSTV)
- Choi and Savarese, ECCV 2012
- Khamis et al., ECCV 2012

J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Computing Surveys (CSUR), 43(3):16, 2011.



Choi and Savarese, ECCV 2012



Khamis et al., ECCV 2012



### A new descriptor for activities

#### Properties of feature-based methods for Activity Analysis:

- They are general purpose descriptors and they work very well even in the presence of clutter, i.e. crowded scenes.
- They have a tendency to model general motion in the scene (i.e. foreground and background) and they do not discriminate if the temporal information is related to human activities.

#### Properties of people-based methods for Activity Analysis:

- They contain information with a high semantic meaning (context of the area and people detection)
- In clutter or crowded environments their performance is highly diminished.

Is there a mid-representation between low-level and high-level features?





## **Temporal Poselet Descriptor (TPOS)**

Is there a mid-representation between low-level and high-level features?



Properties of the **Temporal Poselet Descriptor** for Activity Analysis:

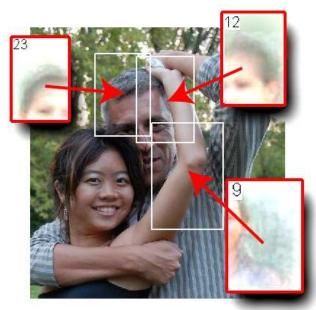
- They are general purpose descriptors and they work very well even in the presence of clutter, i.e. crowded scenes.
- They contain information with a high semantic meaning

TPOS is designed to model semantically meaningful body parts and their motion using **poselets activations in time.** 



### What is a Poselet?

Poselets are a bank of detectors that respond to a part of the pose of a person from a given viewpoint



Poselets strongest activations are likely to localized in specific body parts

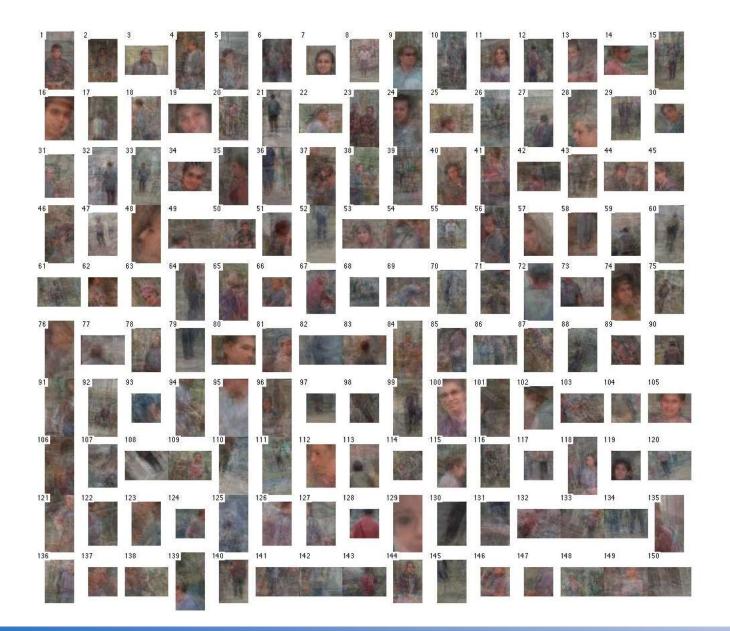


Poselets are parts that are tightly clustered in both appearance and configuration space

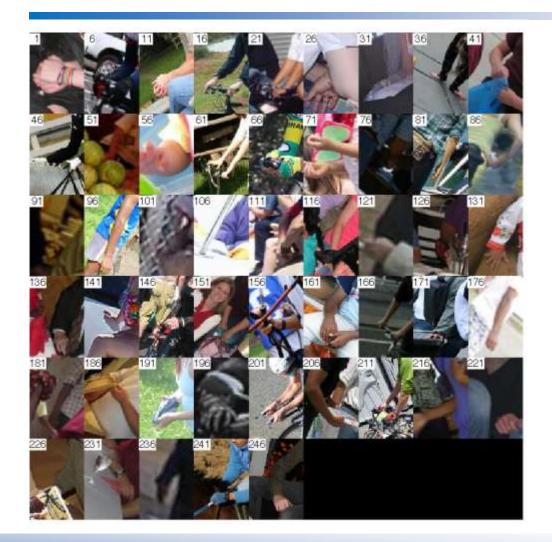


[Bourdev & Malik, ICCV09]

### **150 Poselets**



### **Poselets Details**



#### POSELET #107



### **Poselets Details**



#### POSELET #95



### **Poselets Details**

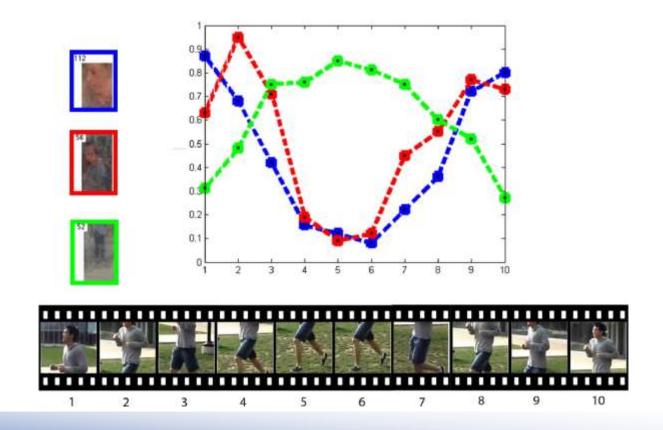


#### POSELET #130



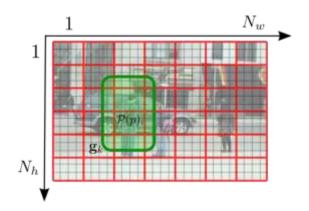
### **Poselets Activation in time**

Our approach implies that in time, given a specific action, poselets activations extracted at each frame are correlated.





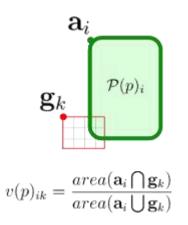
### **Measuring Poselets Activations**



An image is partitioned using a regular grid (in red)



A poselet *p* with activation *i* (green bounding box)



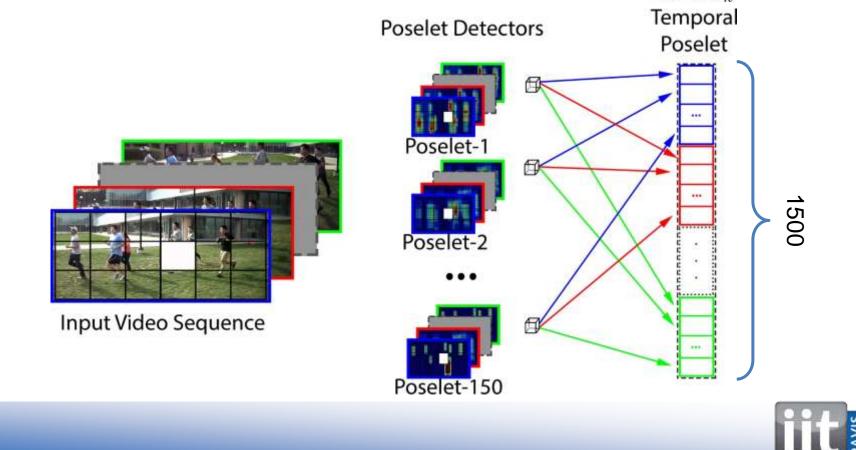
A spatial poselet activation feature is defined as the intersection of the green box and the red cell. Notice that the same poselet activation may intersects and/or include several cell grids in the image.

Similar to Maji et al. CVPR 2010 on single image action classification.



### **Temporal Poselet (TPOS)**

We consider a **video block** of 10 frames and measure each poselet activations in time. The final descriptor is given by the **concatenation** of all the poselets activation scores in all the frames.  $TPOS_k$ 

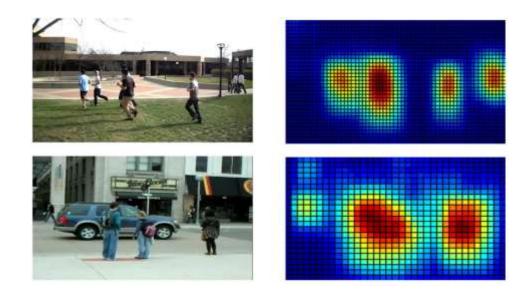


### First task: Group Detection

We compute a *saliency measure* that may be used to discard video blocks with few activations:

 $s_k = \left\| \mathbf{TPOS}_k \right\|_1$ 

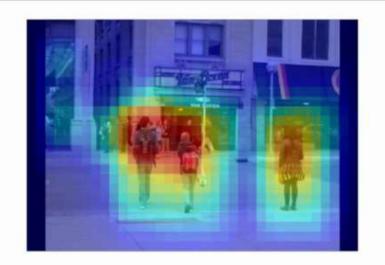
This measure is an indication of the overall activations of a video block

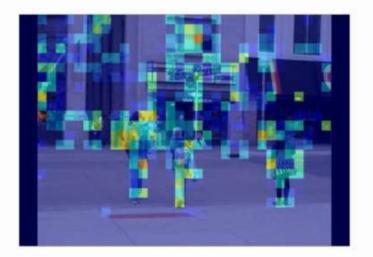




### **Experimental Results**

The following videos show the Activation Maps computed on the Collective Activity Dataset in different scenarios (check supp\_mat.pdf)

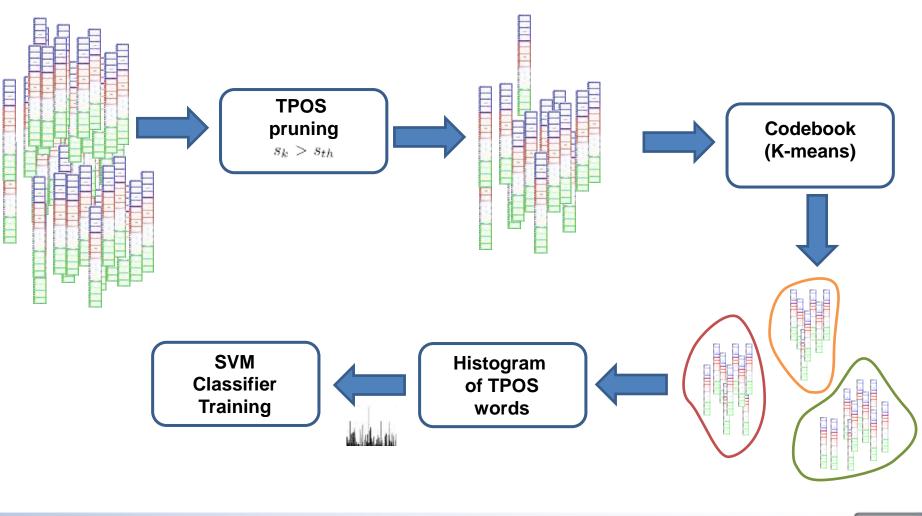




Temporal Poselet (TPOS) Activation Map Baseline Method (BM) Activation Map



### Second task: Action Recognition





### Experimental Results – CAD2/CAD3

**CAD2:** crossing, waiting, queueing, talking, dancing, jogging.

**CAD3**: gathering, talking, dismissal, walking together, chasing, queueing



Crossing



Waiting



Queueing



Walking







### **Experimental Results – Confusion Matrix**

|          | Crossing | Wating | Queueng | Talking | Dancing | Jogging |
|----------|----------|--------|---------|---------|---------|---------|
| Cressing | 47.1%    | 3,9%   | 4.4%    | 6.6%    | 22.8%   | 15.2%   |
| Wating   | 11.3%    | 33%    | 12.2%   | 12.2%   | 2.6%    | 28.7%   |
| Queseing | 3.9%     | 3.3%   | 63%     | 7.8%    | 6.3%    | 15.7%   |
| Talking  | 5.4%     | 1.8%   | 11.6%   | 68.8%   | 2.6%    | 9.8%    |
| Dancing  | 5.6%     | 0%     | 2.5%    | 5.6%    | 83.8%   | 2.5%    |
| Jogging  | 6.3%     | 5.1%   | 4.4%    | 0%      | 3.1%    | 81.1%   |

#### CAD2 Baseline method

|            | Gathering | Taiking | Desmissal | Walking | Chasing | Queueing |
|------------|-----------|---------|-----------|---------|---------|----------|
| Gathering  | 60%       | 0%      | 0%        | 17.8%   | 20%     | 2.2%     |
| Taking     | 1.5%      | 70.5%   | 12.4%     | 10.1%   | 0%      | 5.5%     |
| Dissmissel | 0%        | 37.2%   | 32.6%     | 0%      | 0%      | 30.2%    |
| Waking     | 8.2%      | 16.8%   | 0%        | 45.9%   | 9.2%    | 19.9%    |
| Chasing    | 3.7%      | 0%      | 0%        | 35.2%   | 61.1%   | 0%       |
| Queueing   | 3.7%      | 16%     | 1.3%      | 28.4%   | 3.7%    | 46.9%    |

CAD3 Baseline method

| 23       | Crossing | Walling | Queueing | Talking | Dancing | Jogging |
|----------|----------|---------|----------|---------|---------|---------|
| Crossing | 66.9%    | 2.9%    | 0%       | 6.7%    | 11%     | 12.5%   |
| Waiting  | 5.3%     | 57,4%   | 18.3%    | 13%     | 4.3%    | 1.7%    |
| Queueing | 3.2%     | 10.2%   | 69.3%    | 11.8%   | 3.2%    | 2.3%    |
| Talking  | 2.7%     | 8.1%    | 8.9%     | 76.8%   | 2.6%    | 0.9%    |
| Dancing  | 3.1%     | 4.4%    | 2.5%     | 3,1%    | 86.3%   | 0.6%    |
| Jogging  | 9.4%     | 1.9%    | 0%       | 2.5%    | 5.1%    | 81.1%   |

#### CAD2 TPOS method



#### CAD3 TPOS method



### **Experimental Results – Accuracy**

|      | Base   | TPOS   | RSTV   | [9]    | [12] | [4]   |
|------|--------|--------|--------|--------|------|-------|
| CAD2 | 62.8 % | 72.9 % | 71.7 % | 85.7 % | -    | -     |
| CAD3 | 52.8 % | 72.3 % | -      | -      | 74.3 | 79.2% |

Average Classification Accuracy

- [9] S. Khamis, V. I. Morariu, and L. S. Davis. Combining Per-Frame and Per-Track Cues for Multi-Person Action Recognition. In ECCV 2012.
- [12] T. Lan, Y. Wang, W. Yang, and G. Mori, Beyond actions: Discriminative models for contextual group activities. *NIPS* 2010.
- [4] W. Choi and S. Savarese. A Unified Framework for Multitarget Tracking and Collective Activity Recognition. ECCV 2012, pages 215–230.



### **Conclusions and Future Work**

TPOS is a novel descriptor for human activities analysis:

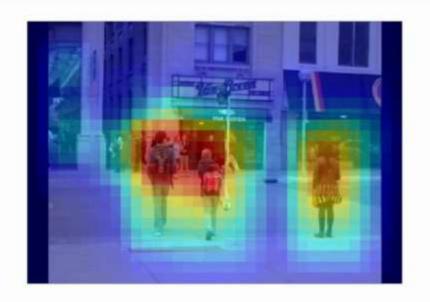
- They are general purpose descriptors and they work very well even in the presence of clutter, i.e. crowded scenes.
- They contain information with a high semantic information about the temporal pose of people in the scene.
- Even without higher-level information (people bounded boxes, tracking information) they are able to obtain reasonable results compared with state of the art approaches.
- Compared to general purpose descriptors, the performance are strongly improved on CAD2/CAD3

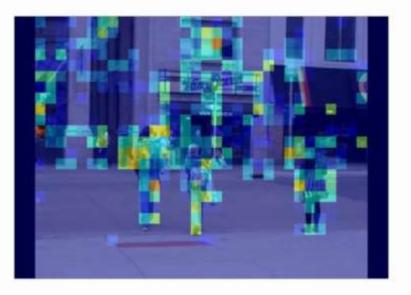
### **Future Work:**

- Solve jointly for action segmentation and recognition using TPOS
- Model more deeply the correlation among poselets activation in time



The following videos show the Activation Maps computed on the Collective Activity Dataset in different scenarios (check supp\_mat.pdf)





Temporal Poselet (TPOS) Activation Map Baseline Method (BM) Activation Map

